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Partition functions

• Polynomials which encode information about probabilistic models
from statistical physics.

• Arise in combinatorics as graph polynomials.

• Main example: matchings in regular graphs.

• Other examples: independent sets and colourings in regular graphs,
triangle-free graphs, etc.
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Matchings in regular graphs

• The monomer-dimer model on a graph G at fugacity λ > 0 is the
probability distribution on matchings such that

P(M) = λ|M|

ZG(λ)

• The function ZG(λ) =
∑

M λ|M| is the partition function.

• The same idea can be used for independent sets, colourings, etc.
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Properties of the partition function

ZG(λ) =
∑
M
λ|M| =

∑
k≥0

mk(G)λk

• The coefficient mk(G) is the number of matchings of size k in G .

• For λ = 1 the partition function counts matchings.

• The average size of a matching M from the monomer-dimer model is

E|M| =
∑

M |M|λ|M|
ZG(λ) = λZ ′G(λ)

ZG(λ) = λ
∂

∂λ
logZG(λ) .
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Previous work

Consider the family of d-regular graphs and let Hd ,n be the disjoint union
of n/2d copies of Kd ,d .

• In previous work we showed that for all λ > 0, Hd ,n maximises the
partition function over n-vertex, d-regular graphs.

• In fact, we showed that Hd ,n maximises

1
|E (G)|E|M| =

λ

|E (G)|
∂

∂λ
logZG(λ)

over all d-regular graphs.
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Main results

We consider two strengthening of these previous results:

1 Could Hd ,n maximise each individual coefficient of ZG(λ)?
This is the upper matching conjecture.

2 If G contains no copy of Kd ,d , should ZG(λ) be significantly smaller
than ZHd,n(λ)? This is a question of stability.

We prove in a general way that a strong form of 2 holds, and that from
such a result, 1 follows for a wide range of parameters.
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Stability

In our previous work we showed that for λ > 0 and d-regular G ,

1
|V (G)| logZG(λ) ≤ 1

2d logZKd,d (λ) ,

and a stronger stability version follows directly from the method.

Theorem
Let G be a d-regular graph which contains no copy of Kd ,d . Then there
exists a continuous function s(d , λ) which is strictly increasing in λ, and
satisfies s(d , 0) = 0, such that the following holds for λ ≥ 0,

1
|V (G)| logZG(λ) ≤ 1

2d logZKd,d (λ)− s(d , λ) .
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Proof: linear programming with local constraints

• Let αG(λ) = 1
|E(G)|E|M| =

λ
|E(G)|

∂
∂λ logZG(λ).

• The maximum value of αG(λ) over all d-regular graphs can be
expressed as a linear program which depends only on d , λ.

• The constraint that G contains no copy of Kd ,d can be naturally
added to the program, yielding:

Lemma
For any d-regular G which contains no copy of Kd ,d ,

αG(λ) ≤ αKd,d (λ)− c(d , λ) .
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Exact bounds on coefficients for almost all sizes

For the coefficient result our method is inspired by an approximate
correspondence between probabilistic models. The idea comes from
statistical physics. We also use a local limit theorem.

• The monomer-dimer model corresponds to the grand canonical
ensemble

• The ‘fixed-size’ model corresponds to the canonical ensemble

varying size
on small block

fixed size
on G
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Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:

• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:

• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:
• with λ→∞: MAX for matchings: Bregman’s theorem

• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:
• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof

• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:
• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof

• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:
• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work

• value of each coefficient: COEFF now almost solved



Further work

• We’ve seen extremal questions from combinatorics give rise to
questions about partition function dominance.

• Consider ZG(λ) and ZH(λ). Forms of dominance include:
• with λ→∞: MAX for matchings: Bregman’s theorem
• with λ = 1: COUNT for independent sets: entropy proof
• for λ > 0: PART another entropy proof
• value of derivative for λ > 0: OCC our previous work
• value of each coefficient: COEFF now almost solved



The big picture

OCC
αG

PART
ZG

COUNT,
MAX

?
COEFF
mk(G)

GCM

CM

The missing piece is the free volume:

fG(M) = set of edges which could be added to M ,

FG,k(λ) = E|fG(Mk)| = (k + 1)mk+1(G)
mk(G) ,

where Mk is a uniformly random matching of size k in G .
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Another big picture

FV

OCC COEFF

PART

COUNT MAX

We conjecture that Hd ,n maximises the free volume for all k,
i.e. has property FV.


