# Exact coefficients of partition functions via stability 

Ewan Davies<br>London School of Economics and Political Science<br>maths@ewandavies.org

August 31, 2017

Joint with Matthew Jenssen, Will Perkins, Barnaby Roberts

## Partition functions

- Polynomials which encode information about probabilistic models from statistical physics.


## Partition functions

- Polynomials which encode information about probabilistic models from statistical physics.
- Arise in combinatorics as graph polynomials.


## Partition functions

- Polynomials which encode information about probabilistic models from statistical physics.
- Arise in combinatorics as graph polynomials.
- Main example: matchings in regular graphs.


## Partition functions

- Polynomials which encode information about probabilistic models from statistical physics.
- Arise in combinatorics as graph polynomials.
- Main example: matchings in regular graphs.
- Other examples: independent sets and colourings in regular graphs, triangle-free graphs, etc.


## Matchings in regular graphs

- The monomer-dimer model on a graph $G$ at fugacity $\lambda>0$ is the probability distribution on matchings such that

$$
\mathbb{P}(M)=\frac{\lambda^{|M|}}{Z_{G}(\lambda)}
$$

## Matchings in regular graphs

- The monomer-dimer model on a graph $G$ at fugacity $\lambda>0$ is the probability distribution on matchings such that

$$
\mathbb{P}(M)=\frac{\lambda^{|M|}}{Z_{G}(\lambda)}
$$

- The function $Z_{G}(\lambda)=\sum_{M} \lambda^{|M|}$ is the partition function.


## Matchings in regular graphs

- The monomer-dimer model on a graph $G$ at fugacity $\lambda>0$ is the probability distribution on matchings such that

$$
\mathbb{P}(M)=\frac{\lambda^{|M|}}{Z_{G}(\lambda)}
$$

- The function $Z_{G}(\lambda)=\sum_{M} \lambda^{|M|}$ is the partition function.
- The same idea can be used for independent sets, colourings, etc.


## Properties of the partition function

$$
Z_{G}(\lambda)=\sum_{M} \lambda^{|M|}=\sum_{k \geq 0} m_{k}(G) \lambda^{k}
$$

- The coefficient $m_{k}(G)$ is the number of matchings of size $k$ in $G$.


## Properties of the partition function

$$
Z_{G}(\lambda)=\sum_{M} \lambda^{|M|}=\sum_{k \geq 0} m_{k}(G) \lambda^{k}
$$

- The coefficient $m_{k}(G)$ is the number of matchings of size $k$ in $G$.
- For $\lambda=1$ the partition function counts matchings.


## Properties of the partition function

$$
Z_{G}(\lambda)=\sum_{M} \lambda^{|M|}=\sum_{k \geq 0} m_{k}(G) \lambda^{k}
$$

- The coefficient $m_{k}(G)$ is the number of matchings of size $k$ in $G$.
- For $\lambda=1$ the partition function counts matchings.
- The average size of a matching $\mathbf{M}$ from the monomer-dimer model is

$$
\mathbb{E}|\mathbf{M}|=\frac{\sum_{M}|M| \lambda^{|M|}}{Z_{G}(\lambda)}=\frac{\lambda Z_{G}^{\prime}(\lambda)}{Z_{G}(\lambda)}=\lambda \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)
$$

## Previous work

Consider the family of $d$-regular graphs and let $H_{d, n}$ be the disjoint union of $n / 2 d$ copies of $K_{d, d}$.

- In previous work we showed that for all $\lambda>0, H_{d, n}$ maximises the partition function over $n$-vertex, $d$-regular graphs.


## Previous work

Consider the family of $d$-regular graphs and let $H_{d, n}$ be the disjoint union of $n / 2 d$ copies of $K_{d, d}$.

- In previous work we showed that for all $\lambda>0, H_{d, n}$ maximises the partition function over $n$-vertex, $d$-regular graphs.
- In fact, we showed that $H_{d, n}$ maximises

$$
\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)
$$

over all $d$-regular graphs.

## Main results

We consider two strengthening of these previous results:

1 Could $H_{d, n}$ maximise each individual coefficient of $Z_{G}(\lambda)$ ? This is the upper matching conjecture.

## Main results

We consider two strengthening of these previous results:

1 Could $H_{d, n}$ maximise each individual coefficient of $Z_{G}(\lambda)$ ? This is the upper matching conjecture.

2 If $G$ contains no copy of $K_{d, d}$, should $Z_{G}(\lambda)$ be significantly smaller than $Z_{H_{d, n}}(\lambda)$ ? This is a question of stability.

## Main results

We consider two strengthening of these previous results:

1 Could $H_{d, n}$ maximise each individual coefficient of $Z_{G}(\lambda)$ ? This is the upper matching conjecture.

2 If $G$ contains no copy of $K_{d, d}$, should $Z_{G}(\lambda)$ be significantly smaller than $Z_{H_{d, n}}(\lambda)$ ? This is a question of stability.

We prove in a general way that a strong form of $\mathbf{2}$ holds, and that from such a result, $\mathbb{1}$ follows for a wide range of parameters.

## Stability

In our previous work we showed that for $\lambda>0$ and $d$-regular $G$,

$$
\frac{1}{|V(G)|} \log Z_{G}(\lambda) \leq \frac{1}{2 d} \log Z_{K_{d, d}}(\lambda),
$$

and a stronger stability version follows directly from the method.

## Stability

In our previous work we showed that for $\lambda>0$ and $d$-regular $G$,

$$
\frac{1}{|V(G)|} \log Z_{G}(\lambda) \leq \frac{1}{2 d} \log Z_{K_{d, d}}(\lambda)
$$

and a stronger stability version follows directly from the method.

## Theorem

Let $G$ be a d-regular graph which contains no copy of $K_{d, d}$. Then there exists a continuous function $s(d, \lambda)$ which is strictly increasing in $\lambda$, and satisfies $s(d, 0)=0$, such that the following holds for $\lambda \geq 0$,

$$
\frac{1}{|V(G)|} \log Z_{G}(\lambda) \leq \frac{1}{2 d} \log Z_{K_{d, d}}(\lambda)-s(d, \lambda)
$$

## Proof: linear programming with local constraints

- Let $\alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)$.


## Proof: linear programming with local constraints

- Let $\alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)$.
- The maximum value of $\alpha_{G}(\lambda)$ over all $d$-regular graphs can be expressed as a linear program which depends only on $d, \lambda$.


## Proof: linear programming with local constraints

- Let $\alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)$.
- The maximum value of $\alpha_{G}(\lambda)$ over all $d$-regular graphs can be expressed as a linear program which depends only on $d, \lambda$.
- The constraint that $G$ contains no copy of $K_{d, d}$ can be naturally added to the program, yielding:


## Lemma

For any $d$-regular $G$ which contains no copy of $K_{d, d}$,

$$
\alpha_{G}(\lambda) \leq \alpha_{K_{d, d}}(\lambda)-c(d, \lambda)
$$

## Proof: simple calculus gives the stability result

$$
\text { Recall } \alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)
$$

## Proof: simple calculus gives the stability result

Recall $\alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)$.
Let $G$ contain no $K_{d, d}$. Then

$$
\frac{1}{|V(G)|} \log Z_{G}(\lambda)=\frac{d}{2} \int_{0}^{\lambda} \frac{\alpha_{G}(t)}{t} d t
$$

## Proof: simple calculus gives the stability result

Recall $\alpha_{G}(\lambda)=\frac{1}{|E(G)|} \mathbb{E}|\mathbf{M}|=\frac{\lambda}{|E(G)|} \frac{\partial}{\partial \lambda} \log Z_{G}(\lambda)$.
Let $G$ contain no $K_{d, d}$. Then

$$
\begin{aligned}
\frac{1}{|V(G)|} \log Z_{G}(\lambda) & =\frac{d}{2} \int_{0}^{\lambda} \frac{\alpha_{G}(t)}{t} \mathrm{~d} t \\
& \leq \frac{d}{2} \int_{0}^{\lambda} \frac{\alpha_{K_{d, d}}(t)-c(d, t)}{t} \mathrm{~d} t \\
& =\frac{1}{2 d} \log Z_{K_{d, d}}(\lambda)-\underbrace{\frac{d}{2} \int_{0}^{\lambda} \frac{c(d, t)}{t} \mathrm{~d} t}_{s(d, \lambda)}
\end{aligned}
$$

## Exact bounds on coefficients for almost all sizes

For the coefficient result our method is inspired by an approximate correspondence between probabilistic models. The idea comes from statistical physics. We also use a local limit theorem.

## Exact bounds on coefficients for almost all sizes

For the coefficient result our method is inspired by an approximate correspondence between probabilistic models. The idea comes from statistical physics. We also use a local limit theorem.

- The monomer-dimer model corresponds to the grand canonical ensemble


## Exact bounds on coefficients for almost all sizes

For the coefficient result our method is inspired by an approximate correspondence between probabilistic models. The idea comes from statistical physics. We also use a local limit theorem.

- The monomer-dimer model corresponds to the grand canonical ensemble
- The 'fixed-size' model corresponds to the canonical ensemble


## Exact bounds on coefficients for almost all sizes

For the coefficient result our method is inspired by an approximate correspondence between probabilistic models. The idea comes from statistical physics. We also use a local limit theorem.

- The monomer-dimer model corresponds to the grand canonical ensemble
- The 'fixed-size' model corresponds to the canonical ensemble



## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:
- with $\lambda \rightarrow \infty$ : MAX for matchings: Bregman's theorem


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:
- with $\lambda \rightarrow \infty$ : MAX
- with $\lambda=1$ : COUNT
for matchings: Bregman's theorem for independent sets: entropy proof


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:
- with $\lambda \rightarrow \infty$ : MAX
- with $\lambda=1$ : COUNT
- for $\lambda>0$ : PART
for matchings: Bregman's theorem for independent sets: entropy proof another entropy proof


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:
- with $\lambda \rightarrow \infty$ : MAX
- with $\lambda=1$ : COUNT
- for $\lambda>0$ : PART
- value of derivative for $\lambda>0$ : OCC
for matchings: Bregman's theorem for independent sets: entropy proof another entropy proof
our previous work


## Further work

- We've seen extremal questions from combinatorics give rise to questions about partition function dominance.
- Consider $Z_{G}(\lambda)$ and $Z_{H}(\lambda)$. Forms of dominance include:
- with $\lambda \rightarrow \infty$ : MAX
- with $\lambda=1$ : COUNT
- for $\lambda>0$ : PART
- value of derivative for $\lambda>0$ : OCC
- value of each coefficient: COEFF
for matchings: Bregman's theorem for independent sets: entropy proof another entropy proof
our previous work
now almost solved


## The big picture

$$
\begin{gathered}
\underset{\alpha_{G}}{\mathrm{OCC}} \longrightarrow \begin{array}{c}
\mathrm{PART} \\
Z_{G} \\
\uparrow \\
?
\end{array} \longrightarrow \begin{array}{c}
\text { COUNT, } \\
\mathrm{MAX}
\end{array} \\
\longrightarrow \begin{array}{c}
\text { COEFF } \\
m_{k}(G)
\end{array}
\end{gathered}
$$

## GCM

CM

## The big picture



## GCM

The missing piece is the free volume:

$$
\begin{aligned}
f_{G}(M) & =\text { set of edges which could be added to } M, \\
F_{G, k}(\lambda) & =\mathbb{E}\left|f_{G}\left(\mathbf{M}_{k}\right)\right|=(k+1) \frac{m_{k+1}(G)}{m_{k}(G)}
\end{aligned}
$$

where $\mathbf{M}_{k}$ is a uniformly random matching of size $k$ in $G$.

## Another big picture



We conjecture that $H_{d, n}$ maximises the free volume for all $k$, i.e. has property FV.

