Bounding the (list) chromatic number of triangle-free graphs

E. Davies and F. Illingworth
research@ewandavies.org
May 15, 2022

- Δ is maximum degree, α is the size of the largest independent set, χ is the chromatic number
- ρ is the Hall ratio $\max _{\varnothing \neq H \subset G} \frac{|H|}{\alpha(H)}$
- χ_{f} is the least k such that there's a probability distribution on independent sets such that for all $v, \operatorname{Pr}(v \in I) \geqslant 1 / k$
- χ_{ℓ} is the least k such that whenever the vertices of a graph are given lists of k allowed colors, there is a proper coloring using allowed colors
- χ_{c} is more general: for each edge $u v$ specify an arbitrary matching of 'forbidden pairs' from the lists $L(u)$ and $L(v)$
- In any graph $\rho \leqslant \chi_{f} \leqslant \chi \leqslant \chi_{\ell} \leqslant \chi_{c}$

How does local structure constrain $\chi(G)$?

- Greedy algorithm: $\chi \leqslant \Delta+1$
- Brooks (1941): this is tight only for odd cycles and cliques
- Descartes (Tutte, 1954): there are triangle-free graphs with arbitrarily large chromatic number
- Vizing (1968): posed the problem of bounding χ in terms of Δ for triangle-free graphs
- Various authors (1977-8): for triangle-free graphs $\chi \leqslant \frac{3}{4}(\Delta+2)$; Kostochka (1978): $\chi \leqslant \frac{2}{3}(\Delta+3)$
- Johansson (1996): $\chi \leqslant O(\Delta / \log \Delta)$ Molloy (2019): $\chi \leqslant(1+o(1)) \Delta / \log \Delta$

Refined notions of coloring

List coloring

- Greedy algorithm still works: $\chi_{\ell} \leqslant \Delta+1$
- Vizing (1976) gave the list version of Brooks' theorem
- Methods of Johansson (1996) and Molloy (2019) also apply to list coloring: for triangle-free graphs $\chi_{\ell}(G) \leqslant(1+o(1)) \Delta / \log \Delta$

Correspondence coloring

- Greedy algorithm still works: $\chi_{c} \leqslant \Delta+1$
- Bernshteyn, Kostochka and Pron (2017) gave a corresponding version of Brooks' theorem
- Bernshteyn $(2016,2019)$ adapted the methods of Johansson and Molloy: for triangle-free graphs $\chi_{c} \leqslant(1+o(1)) \Delta / \log \Delta$

The χ-Ramsey problem for triangle-free graphs

- Erdős (1967) asked for the greatest chromatic number among n-vertex triangle-free graphs
- Related to the classic Ramsey problem of finding the largest independent set in triangle-free graphs as iteratively pulling out such sets gives a coloring, cf. Erdős and Hajnal (1985)
- Each of $\rho \leqslant \chi_{f} \leqslant \chi \leqslant \chi_{\ell} \leqslant \chi_{c}$ has a Ramsey-type question
- Bounding $\rho=\max _{\varnothing \neq H \subset G} \frac{|H|}{\alpha(H)}$ in K_{r}-free graphs is classic Ramsey theory, bounding each of the others is harder
- Mostly we don't know the correct dependence of ρ on n, but the question of how close the bound for χ can be made to the best-known for ρ is still interesting

The χ-Ramsey problem for triangle-free graphs

- Ajtai, Komlós and Szemerédi (1980): $\rho \leqslant O(\sqrt{n / \log n})$
- Shearer (1983) improved to $(\sqrt{2}+o(1)) \sqrt{n / \log n}$
- Iterating gives $\chi \leqslant(2 \sqrt{2}+o(1)) \sqrt{n / \log n}$
- What is that extra factor ' 2 ' doing there?
- Pulling out independent sets does not seem to work for list (or correspondence) coloring. What is the correct order of growth?
- Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot (2020) asked such questions, while proving $\chi_{f} \leqslant(2+o(1)) \sqrt{n / \log n} \quad$ and $\quad \chi_{l} \leqslant O(\sqrt{n})$
- The correct growth rate for χ_{c} is actually $\Theta(n / \log n)$ (cf. Král', Pangrác, and Voss 2005 and Bernshteyn 2016, 2019)

Our results in triangle-free graphs

- For chromatic number we match the previous bound for fractional chromatic number: $\chi \leqslant(2+o(1)) \sqrt{n / \log n}$
- So we now ask why there is an extra factor ' $\sqrt{2}$ '...
- For list chromatic number we show $\chi_{\ell} \leqslant O(\sqrt{n / \log n})$
- Our method highlights subtle aspects of list coloring: bounds in terms of color-degree, etc. . .
- Adapting existing methods also yields bounds in terms of the number of edges or genus that are tight up to a constant factor, cf. Poljak and Tuza (1994), Nilli (Alon, 2000), Gimbel and Thomassen (2000)
- The paper is here: https://doi.org/10.1137/21M1437573 and here: https://arxiv.org/pdf/2107.12288

The proof sketch for chromatic number

- Ignore all o(1) terms and prove $\chi \leqslant 2 \sqrt{n / \log n}$ by induction
- We are done by Molloy's theorem if $\Delta \leqslant \sqrt{n \log n}$
- Let v be a vertex of larger degree and let $G^{\prime}=G-N(v)$ on $n^{\prime} \leqslant n-\sqrt{n \log n}$ vertices
- Since $N(v)$ is independent, $\chi(G) \leqslant 1+\chi\left(G^{\prime}\right)$ and by induction,

$$
\chi\left(G^{\prime}\right) \leqslant 2 \sqrt{\frac{n^{\prime}}{\log n^{\prime}}} \lesssim 2 \sqrt{\frac{n-\sqrt{n \log n}}{\log n}} \leqslant 2 \sqrt{\frac{n}{\log n}}-1
$$

- Exercise: extend this sketch to a correct proof!

The idea for list chromatic number

- Let each vertex have a list $L(v)$ of allowed colors
- Can't assume all neighbors of v are allowed the same color
- But there's a notion of color-degree that works: for $c \in L(v)$, $\operatorname{deg}_{L}(v, c)$ is the number of neighbors of v that have color c on their list
- Happily, due to Amini and Reed (2008), Alon and Assadi (2020), or even Anderson, Bernshteyn and Dhawan (2022+) we have a color-degree analogue of Johansson's theorem

Theorem

If L is a list-assignment for a triangle-free graph G such that $|L(v)| \geqslant(4+o(1)) d / \log d$ and every $\operatorname{deg}_{L}(v, c) \leqslant d$, then G admits an L-coloring

- If all color-degrees are $O(\sqrt{n \log n})$ then done by theorem
- Otherwise, there's a vertex v, a color $c \in L(v)$, and a large set $S_{c} \subset N(v)$ such that $c \in L(w)$ for $w \in S_{c}$
- Color S_{c} with c and let $G^{\prime}=G-S_{c}$ with lists $L^{\prime}(w)=L(w) \backslash\{c\}$
- Observe that G admits an L-coloring if G^{\prime} admits an L^{\prime}-coloring
- Set up the constant factors and an induction hypothesis such that G^{\prime} admits an L^{\prime}-coloring by induction
- Some constant factor loss due to pesky '4' in the theorem
- Improving ' 4 ' to ' 1 ' in the theorem is an open problem, conjectured by Cambie and Kang (2021) and Anderson, Bernshteyn and Dhawan (2022+); would imply the same bound on χ_{ℓ} that we proved for χ
- Kelly and Postle (2018+) posed a conjecture which would allow us to remove the ' $\sqrt{2}$ ' and match Shearer's upper bound for ρ in triangle-free graphs with a bound for χ_{f}
- Their conjecture is equivalent to the existence of a probability distribution on independent sets in a triangle-free graph such that for every vertex v

$$
\operatorname{Pr}(v \in I) \geqslant(1-o(1)) \frac{\log \operatorname{deg}(v)}{\operatorname{deg}(v)}
$$

cf. Shearer (1991) $\alpha \geqslant \sum_{v \in V(G)}(1-o(1)) \frac{\log \operatorname{deg}(v)}{\operatorname{deg}(v)}$

- I do not know of any analogous conjecture/argument that would show we can remove a ' $\sqrt{2}$ ' for χ or χ_{ℓ}
- This seems interesting!
- The theorem of Anderson, Bernshteyn and Dhawan actually states that for an arbitrary graph G with list assignment L, if
(a) $|L(v)| \geqslant(4+o(1)) d / \log d$
(b) $\operatorname{deg}_{L}(v, c) \leqslant d$ for all color degrees
(c) for all colors c, the subgraph of G induced by the vertices with c on their lists is triangle-free then G admits an L-coloring.
- That is, we can push the triangle-freeness onto the 'cover graph' which represents conflicts between colors on lists of G
- Actually, their theorem holds for correspondence coloring...
- Still, it seems reasonable that ' 4 ' can be reduced to ' 1 '
- An alternative perspective seeks results with 'local’ bounds: Let G be a triangle-free graph with list assignment L such that for all vertices v and colors $c \in L(v)$ we have $|L(v)| \geqslant(1+\varepsilon) \operatorname{deg}_{L}(v, c) / \log \operatorname{deg}_{L}(v, c)$
- Additional conditions are needed for an L-coloring (D., de Joannis de Verclos, Kang, and Pirot 2020) e.g. for some $d \geqslant d_{0}(\varepsilon)$ we need polylog $(d) \leqslant \operatorname{deg}_{L}(v, c) \leqslant d$
- Kelly (2019) conjectures (roughly) that in this case G should indeed admit an L-coloring
- D., de Joannis de Verclos, Kang, and Pirot (2020) proved this when the bound is in terms of $\operatorname{deg}(v)$ instead of color-degree
- Kelly showed that the full version of his conjecture implies the probability distribution conjecture of Kelly and Postle!
- What about pushing triangle-freeness into the cover?
- Versions of Molloy's theorem are known for other 'locally sparse' conditions which invites applications of our methods to a range of χ-Ramsey questions
- We decided not to do this, as it largely concerns chasing constant factors in bounds we don't know are tight
- Many of the best-known bounds here follow from adaptations of Molloy's method (D., Kang, Pirot and Sereni 2020+) but these methods are not known to work with color-degrees
- Recent works of Anderson, Bernshteyn and Dhawan (2021+, $2022+$) are based on Johansson's earlier approach and give color-degree results in $K_{t, t}$ or $K_{1, t, t}$-free graphs

Final conjecture

The ideal result is that L-colorings exist when for all $c \in L(v)$, $|L(v)| \geqslant(1+o(1)) \operatorname{deg}_{L}(c, v) / \log ^{2} \operatorname{deg}_{L}(c, v)$ and the cover is triangle-free, with the mildest lower bounds on degrees possible (in fact, the correspondence version of this)

Thank you

